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1 Executive Summary 

Advances in FPGA-based reconfigurable computing (RC) technology over the past decade have aroused significant 
interest throughout the community to exploit performance, power, area, cost, and versatility advantages in FPGA devices as 
compared to conventional microprocessor and ASIC technologies.  However, significant challenges exist in application 
development tools and design methodologies for FPGA-based systems, a highly laborious and specialized activity, limiting 
the scope and widespread use of this technology.  A fundamental reformation in application design methodologies and 
concepts to bridge the widening semantic gap between design productivity and execution efficiency is critical for the success 
of this technology.  This research study focuses on investigating key challenges, in terms of limitations in existing FPGA 
tools, and identifying and developing potential research areas to address these challenges.  The investigation conducted is 
formulated in terms of several major tasks, including: (a) survey of use cases (current and projected) and the state of existing 
tools; (b) characterization of limitations of existing flows, analysis of key technical challenges, and identification of potential 
solutions; and (c) qualitative and quantitative analysis and evaluation of the solution space and projected impact.  

Several key limitations and design challenges have been identified in current FPGA design methodologies based upon 
survey results and FPGA tool and use case taxonomies.  Chief among these limitations are: lack of Formulation concepts and 
tools for rapid algorithm and architecture exploration, performance prediction, and tradeoff analysis; lack of high-level, 
parallel Design languages enabling hardware-software co-design; unpredictable and excessively long Translation times; and 
lack of system-level, run-time verification and analysis tools for debug and optimization.  To address these challenges, new 
methodologies and concepts based upon the four phases of application development, Formulation, Design, Translation, and 
Execution (FDTE), are critical.  Twelve strategic research thrusts have been identified and defined within these four 
development phases that have the potential to revolutionize the application development productivity on FPGA-based 
systems.  Many of these potential solutions are significant research challenges requiring a fundamental reformation in design 
methodologies and necessitating major research initiatives and investments in the field.  The impacts of the proposed 
solutions are shown to be significant in revolutionizing FPGA design productivity and execution efficiency, which is critical 
for a wide variety of new and emerging uses and missions.  Also, beyond the scope of RC, Formulation for RC has the 
potential to aid and help address some of the design productivity challenges now facing general-purpose, fixed-architecture, 
many-core computing technologies and therefore may potentially apply to a broadening array of computing paradigms.  

As a result of this study a new research initiative, the Strategic Infrastructure for Reconfigurable Computing 
Applications (SIRCA), is proposed.  Research results from this program would ultimately lead to a high-productivity 
integrated development environment (IDE) for FPGA-based applications.  The proposed goals of SIRCA are: 

a) Develop innovative end‐to‐end concepts, methods, and integrated toolsets to dramatically improve the 
development productivity of FPGA‐based RC applications. 

b) Revolutionize implementation of critical applications by broadening the use of FPGA‐based RC among domain 
scientists and system designers for both high‐performance computing (HPC) and/or embedded (HPEC) scenarios. 

2 Existing Limitations and Root Causes 

Throughout this study, the analysis of challenges and limitations for application development and execution on FPGA-
based systems are classified based upon the four application development phases.  As shown in Figure 1, these phases are 
Formulation, Design, Translation, and Execution.  These phases encompass the overall process of producing a final 
Reconfigurable Computing (RC) solution, from problem formulation to execution.  During Formulation, requirements are 
expressed using abstract modeling thereby enabling strategic exploration of the algorithm and architecture of the application.  
During the Design phase, details regarding the behavior and structure of the algorithm(s) and circuit architecture are 
specified.  Mapping from the structural representation provided during the Design phase to actual resources on the target 
hardware producing a hardware/software solution for the platform occurs in Translation.  Finally, during Execution, the run-
time services are integrated to support executing, monitoring, debugging, and optimization of the full application.  The 
baseline flow of tools for single-FPGA applications is augmented with additional tools, concepts, and support when 
necessary to support applications that demand the performance of multiple devices.  Within each of the four FDTE phases, 
tools are further classified into three categories, based upon their function within that phase.  As shown in Figure 2, these 
categories are Performance Analysis, Development, and Validation. 
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Figure 1. Application development 

phases 

 

Figure 2. Tool taxonomy 

A use case is a usage scenario that defines how the user perceives the RC system.  Our use-case survey, conducted in Q3 
of 2007 with approximately 30 groups using FPGA technologies, confirmed a broad range of applications, missions, and 
needs in the community and the specific missions and target platforms explicitly driving challenges for the tool flows.  Use 
cases for the purpose of this study are general-purpose computing (GPC), high-performance computing (HPC) or high-
performance reconfigurable computing (HPRC), and high-performance embedded computing (HPEC).  In the GPC use case, 
the user perceives the underlying architecture as a standard von Neumann machine, such as a desktop.  In the HPC/HPRC 
usage scenario, the user perceives the underlying machine as a parallel computer.  Finally, the HPEC usage scenario uses the 
underlying machine as an embedded parallel computer.  Figure 3 shows the usage taxonomy, where all mission scenarios are 
categorized into either the single- or multi-FPGA baseline flow, with additional special mission requirements as needed (e.g. 
for HPEC), such as real-time (RT), fault-tolerance (FT), partial-reconfiguration (PR), run-time reconfiguration, system-on-
chip (SoC), and energy-efficiency considerations. 

The tool flow employed during application development, while influenced by the use case, is highly dependent upon the 
end-user type.  Application developers, for example, use a different set of tools than system designers.  While application 
developers are satisfied using tools that abstract away the hardware, system designers require low-level tools to optimize a 
solution based upon the target hardware.  Users are classified into two main categories, System Designers and Application 
Designers.  Application Designers are further divided into three subcategories, Domain Scientists, RC-Aware Domain 
Scientists, and RC Engineers.  The category of Domain Scientists encompasses users with little to no knowledge of the 
underlying FPGA-based system.  The category of RC-Aware Domain Scientists is comprised of users with enough 
knowledge of the hardware to make explicit references to hardware-optimized functions and tools.  Finally, the category of 
RC Engineers encompasses users knowledgeable of the entire tool chain or flow.  By contrast, System Designers includes 
users who require advanced tools to optimize the hardware for specific target architectures.  Figure 4 shows the 3-
dimensional representation of the taxonomies discussed above: tools, use case, and user taxonomy.  
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Figure 3. Use case taxonomy 
 

Figure 4. FPGA application development space 

Analysis of our user survey results revealed the fundamental limitations that exist in the current tools and design 
methodologies for FPGA-based development.  These limitations are described and categorized next, based upon each of the 
four application development phases, Formulation, Design, Translation, and Execution. 

2.1 Formulation Challenges and Limitations 

Formulation has been largely overlooked by existing tools and methodologies and is either skipped completely or 
conducted through iteratively traversing the later phases.  Critical strategic design decisions are not made through algorithm 
exploration, architecture exploration and mapping, and numerical analysis (e.g. dynamic range vs. precision) but rather ad-
hoc in the Design, Translation, and Execution phases [Edwards-97, Fornaciari-02, Gries-03].  As a result, this approach often 
leads to wasteful and costly design iterations resulting from poor initial design decisions.  The few tools that exist for 
Formulation are largely inadequate and often specific to a single application domain.  Furthermore, they are not integrated 
with other key elements of the tool flow [Densmore-06].  Without a bridge to the Design phase, any analysis and algorithm 
models created using such Formulation tools are discarded, necessitating a fresh start in the Design phase. 

2.2 Design Challenges and Limitations  

While there are many Design tools available, ranging from hardware description languages (HDLs) to high-level 
languages (HLLs), such tools require a significant amount of hardware knowledge to use effectively [El-Araby-07a, El-
Araby-07b].  HDLs require extensive hardware expertise, thus excluding a potentially broader user base of domain scientists 
and programmers.  Conversely, HLLs lack the ability to adequately specify the concurrency required to fully exploit the 
features of FPGA-based systems.  The lack of integrated, system-level, hardware/software co-design tools and languages 
necessitates manual design partitioning and in some cases requires separate software and hardware tool flows [Planti-99, 
Antola-07].  Support for interoperability and portability among tools and designs is either nonexistent or limited to a small 
group of supported tools and platform configurations [Huang-07].  Hence, even though new HLL tools offer limited 
productivity improvements, more often the designs must be completely rewritten to execute on different platforms, severely 
limiting design/core reusability and portability.  Furthermore, the scalability of designs to and across multiple FPGAs (or 
nodes) is largely left to the user, an arduous task at best, as there is generally no formal system-level support. 

2.3 Translation Challenges and Limitations  

Translation time, in particular place-and-route (PAR) time, is generally considered a major impediment to FPGA 
development productivity.  Translation algorithms are hampered by the unpredictable and often excessively long place-and-
route (PAR) times that can further vary depending on the tool chain [Li-95, Wang-96, Kannan-06].  As FPGAs become 
denser and more complex, these issues will continue to worsen unless new approaches are taken in the Translation phase.  
However, the proprietary and closed-source nature of these tools makes academic and research innovations difficult to 
undertake and achieve [Li-06]. 
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2.4 Execution Challenges and Limitations 

In the Execution phase, tools and methodologies for run-time support are lagging, especially for verification, analysis, 
debugging, and optimization at the system�level [Camera-05, Tong-07].  Run-time services to support mission�specific 
requirements such as job scheduling and completion, checkpoint and heartbeat services for fault tolerance (FT), and 
configuration management for run-time full/partial reconfigurations (RTR/PR) are also largely lacking.  The few available 
run-time services are limited in functionality and are platform-specific.  These problems are made worse by lack of standards 
for FPGA-based systems and subsystem architectures within which to integrate run-time tools [Huang-07]. 

2.5 Causes of the FPGA Productivity Problem 

Current limitations and design challenges are symptoms of the FPGA productivity problem and not the root cause.  The 
problem can be traced back to the incremental and evolutionary growth of tools trailing the advances in hardware capacities 
and innovations in FPGA devices.  Figure 5 shows the evolution of FPGAs along with the concurrent evolution of design 
tools over the same period.  FPGAs in their primordial state were mainly used for glue logic on circuit boards with RTL-level 
design tools.  Advances in device architectures necessitated higher levels of design abstractions such as HDL, HDL+SW, and 
the present day HDL/HLL.  Each evolution of design tools was stacked ad-hoc on top of lower layers by device vendors to 
merely enable use of underlying hardware resources.  Tools were never designed for a broader customer base but rather were 
built bottom-up from Translation and Design phases outward on a need-specific basis.  Technological evolution and 
commercial growth of this industry over the past decade has largely been aligned to support wire-line applications of the 
rising communications and networking industry, the largest customer of FPGA technologies.  Market survivability and 
proprietary closed-source technology have been the chief impediments to broader growth and widespread acceptance in other 
fields. 

 

Figure 5. Technological evolution of FPGAs 

3 Proposed Solutions 
Computing is in the midst of an architecture reformation where unsustainable thermal and power overheads have 

saturated achievable clock frequencies in modern processors, ending performance growth that previously depended upon 
instruction-level parallelism and higher clock frequencies.  The continued quest for higher performance has started a new 
trend focusing on thread- and task-level parallelism, leading to the emergence of homogeneous and heterogeneous multi-and 
many-core computing structures.  Furthermore, increasingly high device design and fabrication costs will encourage use of 
reconfigurable computing (RC) structures ranging from gate-level, reconfigurable devices such as FPGAs [Compton-02] to 
interconnect-level, reconfigurable devices such as Tile-64 processor [Agarwal-07] to increase versatility and therefore market 
size and economy of scale of otherwise prohibitively expensive parts.  Thus, diverse design paradigms and architectures from 
parallel and custom computing systems will eventually permeate into mainstream computing systems resulting in a 
technological convergence and reformation.  There are many promising technologies on this new wave as illustrated in 
Figure 6.  In this manuscript we do not distinguish between multi-core and many-core devices and use the notation MC to 
refer to them collectively.  The two primary classes of MC architectures technology are fixed MC (FMC) devices and 
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reconfigurable MC (RMC) devices.  FMC devices have fixed hardware structure that cannot be changed after fabrication, 
whereas RMC devices can change hardware structure post-fabrication to adapt to specific problem requirements.  These 
categories can be further divided into homogeneous and heterogeneous MC devices.  Homogeneous MC devices have the 
same type of processing core replicated across the chip, whereas heterogeneous devices have different types of processing 
cores optimized for specific tasks.  There are many inherent challenges with FMC devices.  Application-specific FMC 
devices (e.g. ASIC) are inflexible and expensive.  Application-generic devices (e.g. Xeon and Opteron microprocessors) face 
power, cooling, and performance challenges.  Many niches exist between these extremes (Cell, DSP, GPU, NP, etc.) that 
offer some flexibility within specific application domains.  By contrast, RMC devices may offer the best of both worlds, with 
inherent advantages and tradeoffs for speed, flexibility, low-power, adaptability, and economy of scale and size [George-08, 
Williams-08a, Williams-08b].   

 

Figure 6. Evolving landscape of future computing devices 

The on-going reformation in computing device architecture is leading the way to application reformation to fully exploit 
multiple types and layers of parallelism.  The widening semantic gap between application design productivity and execution 
efficiency poses significant design challenges to fully exploit the potential of heterogeneous, reconfigurable, and many-core 
architectures.  Complexity abounds and application developers must now understand and exploit parallelism.  This problem is 
new to the mainstream computing community, but it has been fundamental and familiar to the FPGA-based RC and HPC 
parallel-computing community.  In this application reformation, holistic concepts, methods, and tools must emerge to focus 
upon computational fundamentals.  We also need to learn lessons from other engineering fields and build a basis for an RC 
engineering discipline.  

Table 1. SIRCA research thrusts 

 Research Thrusts F D T E

F 

1. Strategic exploration ×    
2. High-level prediction ×    
3. Numerical analysis ×    
4. Bridging design automation × ×   

D 
5. System-level parallel languages  × ×  
6. HW/SW co-design methods  × ×  
7. Reusable & portable design × × ×  

T 
8. Translation algorithms   ×  
9. Translation target architectures   ×  

E 
10. Run-time debug & verification  ×  × 
11. Performance analysis  ×  × 
12. Run-time services    × 
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To accelerate and ensure the success of the application reformation, we introduce SIRCA, a Strategic Infrastructure for 
Reconfigurable Computing Applications. SIRCA is proposed as new set of concepts to enable  development of high-
productivity integrated environment for FPGA-based applications.  We have identified and defined 12 strategic research 
thrusts to address the limitations and bridge the semantic gap between productivity and execution efficiency.  These are listed 
in Table 1 and described below, organized across the four application development phases.  Although some research thrusts 
span across multiple phases as indicated by × marks in Table 1, they have been grouped under their primary application 
development phases in our discussion below.   

3.1 Formulation: Research Thrusts and Qualitative Impacts 

The Formulation phase is the strategic design “playground” for managing the increasing complexity of an FPGA-based 
RC application.  This phase involves abstract modeling of the application and strategic exploration of the algorithm and 
architecture of the application.  Critical strategic design decisions and tradeoffs should be made in this phase, minimizing the 
need for “seat-of-the-pants” decisions made in the detailed Design phase.  There is no coding in the traditional sense in this 
phase.  The research thrusts identified for the Formulation phase are as follows. 

Thrust #1: Strategic Exploration 

Strategic exploration consists of high-level modeling and analysis techniques for rapid exploration and mappings of 
algorithms and architectures to investigate viable combinations.  It does not involve any coding in the traditional sense, rather 
intuitive analysis and representation of the algorithm to best exploit parallelism.  The representation can be graphical, textual, 
or hybrid with inherent constructs for expressing multiple levels and layers of parallelism such as pipelines for expressing 
deep parallelism and kernel replications for expressing wide parallelism.  Algorithm modeling can be aided with libraries of 
common, predefined patterns for rapid exploration enhancing reusability.  Patterns are recurring solutions for commonly 
faced problems, knowledge of which are often acquired through significant design experience [Dehon-04, Nagarajan-08].  
Pattern-based design methodologies offer formal mechanisms for capturing and reusing these solutions or common recipes to 
allow novice designers to reuse the wisdom of hardware experts, enhancing their productivity.  A pattern-based methodology 
integrated with the rest of design flow can offer a basis for strategic exploration, knowledge capture, reuse, and semi-
automation to the Design phase.  Figure 7 illustrates pattern-based algorithm exploration using a probably density function 
(PDF) estimation application as an example.  Analysis of the pseudo-code for the PDF estimation algorithm reveals many 
commonly occurring patterns such as pipelining, loop fusion, datapath replication, and memory-dependency resolution.  
Algorithm modeling for this application can use pre-defined constructs for these patterns from a library for exploration and 
mapping to a target platform, significantly increasing user productivity.  Exploration and mapping of algorithm models to 
target architectures can be performed using abstract hardware models of the target platforms specifying key architectural 
features such as I/O bandwidths, internal/external memory banks, and FPGA resources.  Strategic exploration inherently 
involves iterative and incremental refinements to the algorithm models, mechanisms which are essential for design space 
exploration. 

Languages for algorithm modeling can be based upon existing modeling techniques used in software engineering such 
as UML [UML] and ADDL [AADL], but may need to be retrofitted for hardware modeling and exploration. Alternatively, 
new modeling languages and techniques may be needed to satisfy the requirements of strategic exploration for RC. Figure 8 
illustrates an example of PDF estimation modeling using an RC Modeling Language (RCML) under development at the 
Florida site of CHREC.  RCML is a step towards exploring Formulation concepts and methods for FPGA application 
development.  RCML is a hierarchical, hybrid modeling approach with built-in constructs and patterns for expressing various 
computation and communication mechanisms and exploring different levels and layers of parallelism.   

Abstract hardware models of target architectures can also be specified in RCML for algorithm and architecture mapping 
and exploration.  Mapped algorithm and architecture models collectively form RCML system models which can interface to 
other tools for prediction and design automation, as will be discussed later.  Concepts of strategic exploration have also been 
explored in a platform-based design (PBD) approach for embedded systems design presented in [Sangiovanni-Vincentelli-
07].  Platform-based design is a formal system-level development methodology based on the concepts of abstraction and 
iterative refinement.  It is a meet-in-the-middle process, where successive refinements of specifications meet with 
abstractions of potential implementations. Figure 9 from [Sangiovanni-Vincentelli-07] illustrates function and architecture 
separation and mapping in platform-based design process.  Functional representations of application specifications in 
platform-based design are completely independent of implementation architecture.  Abstract hardware platform modules are 
used to represent functional description of the architecture such as processors, memories, and custom hardware.  The 
mapping process is a design-by-refinement paradigm that binds application functionality to platforms to generate 
implementation.  



 

7 

 

Figure 7. Pattern-based algorithm exploration 

 

Figure 8. Example of PDF estimation modeling using RCML 

Thrust #2: High-level Prediction 

For mapping and exploration of algorithm models to target architectures, fast high-level performance and resource 
prediction methods are essential to avoid wasteful design iterations caused by poor strategic decisions producing sub-optimal 
designs.  An application design for an FPGA-based system involves making many strategic decisions such as selecting data 
precision, pipeline depth, number of core replications, memory hierarchy, and data locality for available resources.  
Functionality and performance are inextricably linked to these decisions and dependent on correct choices for a particular 
target platform.  These decisions are platform-specific and vary from one platform to another.  High-level performance and 
resource prediction techniques can facilitate rapid design space exploration enabling informed strategic decisions by users.  
These methods can be analytical [Smith-03, Holland-07], simulative [Grobelny-07, Scrofano-07], or a combination thereof and 
should be seamlessly integrated in the design flow for rapid exploration.  Analytical techniques typically model computational 
throughputs and communication overheads via representative mathematical models and are often designed for fast but low-
fidelity performance and resource estimations.  Simulative and hybrid analysis models are typically more detailed and designed 
for higher fidelity estimates and used for virtual prototyping of applications and target systems.   

 

for(i=0;i<num_samples;i++)

{  for(j=0;j<N;j++)
{ for(k=0;k<N;k++)

{ 

tx=(pdfx[j]-x[i]);
ty=(pdfy[k]-y[i]);

t=1-((tx*tx)+(ty*ty));

if(t>0&t<=1)
{
pdf[j][k]=pdf[j][k]+t;

}
}

}
}
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Figure 9. Function/architecture mapping in platform-based design process [Sangiovanni-Vincentelli-07] 

Figure 10 shows flowcharts and frameworks for two high-level, performance prediction examples under development at 
the University of Florida CHREC site.  The RC Amenability Test or RAT (Figure 10a) is an analytical prediction 
methodology that models computational throughput and communication latencies to provide quick, ball-park performance 
estimates for rapid design exploration [Holland-07]. RAT supports analysis of algorithms for specific target architectures by 
parameterizing significant elements of application behavior while characterizing the FPGA system via microbenchmarks.  
RAT is intended for use in strategic algorithm/architecture exploration to examine and refine the target algorithms for 
optimal mappings on target architectures.  Figure 10b shows a diagram of an RC simulation framework [Grobelny-07].  This 
framework is a high-level, simulative, virtual prototyping tool for mapping arbitrary applications to targeted reconfigurable 
systems.  The framework splits the prototyping process into two separate domains, the application and simulation domains, 
with six key components as shown.  Under application domain, hardware and application characterizations can be performed 
independently and simultaneously, leading to fast and accurate performance prediction results.  Generated component models 
and application scripts can also be reused for rapid analysis.  System models driven by application scripts produce simulative 
performance prediction results. Several diverse FPGA platforms such as a socket-based FPGA platform (XD1000), a PCI-
based FPGA platform (Nallatech cluster), and a proprietary FPGA platform (SRC-6) have been modeled using this 
framework.   

 
(a) 

 
(b) 

Figure 10. Flowcharts for high-level prediction methods: (a) RC Amenability Test (RAT), and (b) RC Simulation framework  
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Thrust #3: Numerical Analysis 

The ability to use variable bit-widths for arithmetic computations gives FPGAs significant performance and resource 
advantages over competing computational technologies such as microprocessors and GPUs.  Numerical accuracy, 
performance, and resource utilization are inextricably linked, and the ability to exploit this relationship is a key advantage of 
FPGAs.  Higher precision comes at the cost of lower performance, higher resource utilization, and increased power 
consumption.  Hence numerical analysis for optimizing bit-width selection for satisfactory implementation of target 
algorithms on FPGAs is essential to reap their full benefit.  Numerical analysis involves selecting minimum numerical 
precision and data range.  Data range analysis involves selecting minimum bit-widths to accommodate the dynamic range of 
possible numeric values, whereas precision analysis involves studying sensitivity of outputs of arithmetic components to 
changes in bit-widths [Lee-06].  Due to limited precision options such as 16-bit and 32-bit integers, and 32-bit float and 64-
bit double floating point numbers, numerical analysis is usually circumvented by programmers and computational scientists 
using traditional microprocessor technologies, with the generally adopted principle being “when in doubt, use double.”  But 
with the ability to exploit variable bit-widths in FPGAs, there is a need for resurgence in concepts and integrated methods for 
numerical analysis in the design flow.   

[Lee-06] presents an automated static approach, MiniBit, for optimizing bit-widths for fixed-point feedforward designs.  
The approach uses static analysis and is analytically able to guarantee maximum absolute error bounds.  It uses a semi-
analytical precision analysis, with analytical methods used for error models in conjunction with simulated annealing to 
optimize fractional bits.  Figure 11 shows an overview of their approach.  Although microprocessor technologies offer 
limited choices for precision, significant performance gains can be realized by wise selection of numerical precision for 
variables.  Using higher precision such as double in place of float for microprocessor technologies comes at the cost of 
significant performance and power penalties [Buttari-07].  [Buttari-07] presents an iterative refinement methodology of using 
combinations of 32-bit and 64-bit floating point arithmetic precision to significantly enhance the performance of many dense 
and sparse linear algebra algorithms while maintaining the 64-bit accuracy of the resulting solution.   

 

Figure 11. Overview of MiniBit bit-width optimization technique [Lee-06] 

Thrust #4: Bridging Design Automation 

Formulation innovations are critical in addressing the productivity gap between application design methodologies and 
execution efficiency on complex devices and system architectures.  However, for widespread adoption of Formulation 
methods among users, a bridge from the Formulation phase to the Design phase is critical.  Using the algorithm and 
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architectural models to auto-generate code templates and portions of design from pattern and core libraries can significantly 
enhance user productivity.  This approach can form the basis for design automation where a domain scientist can model 
algorithms using Formulation tools and directly run automatically generated executable code on the target platform.   

 

Figure 12. Pattern-based exploration used for bridging Formulation models to Design 

Pattern-based algorithm exploration detailed under Thrust #1 (Strategic Exploration, Figure 7) can significantly aid in 
code generation.  Pattern libraries used for algorithm modeling and exploration can be pre-populated with parameterized 
designs for each pattern, which in-turn can be used for automated code and/or template generation for bridging Formulation 
models to Design.  This concept is illustrated in Figure 12.  Although design patterns have been extensively used in software 
engineering, their use in hardware design has been limited [Gamma-94].  [Dehon-04] identified and classified several 
common hardware design patterns.  Figure 13 illustrates an example time-multiplexing pattern from the paper.  To our 
knowledge, they presented the first formal documentation template for hardware design patterns modeled similar to software 
engineering patterns and identified potential benefits to education and productivity via reuse, of cataloging common patterns.  

 

Figure 13. Time multiplexing pattern example [Dehon-04] 

Qualitative Impacts of Formulation Innovations 

Figure 14 illustrates an integrated Formulation methodology based upon proposed research innovations.  Innovations in 
Formulation are expected to have significant impact on overall productivity and quality of solution.  Formulation concepts 
with methods and tools to bridge to the Design phase, will result in a major reduction in DTE (Design, Translation, 
Execution) development costs, where DTE cost is a product of time spent per DTE iteration and DTE frequency (i.e. number 
of DTE iterations).  Coding would be minimized and Design phase would be semi-automated through patterns and code 
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templates reducing Design time.  Also, DTE frequency would be reduced since better strategic choices in Formulation mean 
less frequent design and re-design.  This is illustrated in Figure 15.  Abstract algorithm modeling and automation would 
result in significant utility gain (and thus productivity improvement) for non-experts.  Intuitive methods and tools amenable 
to domain scientists and system designers will result in shorter learning curves, eliminating the need for user hardware 
expertise and invigorating widespread use of FPGA-based RC technology.  Moreover, Formulation concepts and methods are 
potentially applicable to a broader range of technologies than only FPGA-based platforms, including systems featuring FMC 
devices and non-FPGA RMC devices. 

 

Figure 14. Formulation methodology 

   

 

Figure 15. Impact of Formulation innovation on overall productivity 

3.2 Design: Research Thrusts and Qualitative Impacts 

While strategic design is performed at the Formulation phase, tactical design, which involves specification of exact 
behavior, is performed in the Design phase.  System-level design languages, hardware/software co-design, and other design 
tools are necessary for design exploration, refinement and verification.  Additional issues to be addressed include design 
reusability, interoperability, and portability. Ideally, coding is minimized through the use of design patterns and code 
templates resulting from the Formulation phase.  The research thrusts identified for the Design phase are as follows. 

Thrust #5: System-level Parallel Languages 

RC development requires specification of computation, communication, and control for FPGAs and other components 
such as microprocessors, graphics processing units (GPU), and serial/parallel bus interfaces.  Development, debugging, and 
verification of these systems involve many system-level considerations such as algorithm decomposition and architecture 
mappings to exploit multiple levels of parallelism, inter-device communications and control, and system-level debug and 
verification.  Although some of these issues are explored in the Formulation phase, actual implementation occurs in the 
Design phase.  Thus, system-level languages with constructs for expressing multiple levels and forms of parallelism are vital 
for efficient design implementation.  Support for multi-paradigm and multi-level design abstractions in these languages can 
significantly improve user productivity.  Multi-paradigm support enhances design productivity by simplifying design for 
diverse hardware devices.  Hierarchical, multi-level design abstractions enable incremental and iterative design refinements 
for productivity versus efficiency tradeoffs.  Higher abstraction levels hide the underlying hardware details and rely on 
automated compile and synthesis tools for efficient design implementations.  Lower design abstractions expose the 
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underlying hardware details to the user enabling manual optimizations.  While the former is more productive, the latter may 
achieve higher resource and execution efficiencies.   

Existing design languages used for FPGAs only address a subset of the system-level design issues.  Most handle 
hardware and software separately and provide varying degrees of design abstractions to the user.  High-level languages 
(HLLs) such as SystemC [SystemC] and Impulse C [Pellerin-05] offer improved user productivity, but trade off execution 
and resource efficiency for limited portability and reusability.  The Carte programming environment may achieve higher 
efficiency but at the cost of portability [Poznanovic-05].  By contrast, hardware description languages (HDLs) such as VHDL 
and Verilog often yield better performance, but come at the cost of greatly decreased design productivity.  HDLs often also 
reduce portability and reusability.  Graphical design entry tools such as Simulink [Simulink] and LabView [LabView] may 
also be used in conjunction with design translation tools such as Xilinx System generator [Sysgen], Altera DSP builder 
[DSPB], and LabView FPGA [LViewFPGA].  These tools offer better design productivity, but again are restrictive in terms 
of application domains, reusability, and design portability.  Although these languages attempt to provide an abstraction layer 
to hide hardware details, significant hardware knowledge is still required for developing optimized designs.  Similar design 
issues also face the conventional computing world with FMC devices, but are more severe with reconfigurable computing.  
Therefore, research innovations in FPGA Formulation and Design languages may benefit the high-performance computing 
and the mainstream computing technologies.  By the same token, research innovations from fixed-computing programming 
methodologies should be leveraged for FPGA-based computing systems.  Concepts and languages developed under the 
DARPA HPCS program such as CHAPEL, FORTRESS, and X10 could be leveraged for FPGA systems design [Ashby-07].  
Design environments such as Gedae also provide potential for further research into system-level, parallel design languages 
[Gedae].  

The programming languages for device-level design must continue to evolve, where continuing innovation is needed to 
raise the level of implementation abstraction above HDL to a true level associated with HLL-based design.  In addition, as 
shown in Figure 16(a) a critical component in this infrastructure that is largely missing is system-level parallel programming 
languages or system coordination languages, be they graphical or textual, functional or imperative.  Somewhat akin to MPI-
C, MPI-Fortran, UPC, et al. in the conventional HPC community, these coordination tools would need to harness the best of 
the device design languages and operate above them, expressing and managing computations and data across multiple 
devices.  

 
                                                      (a)                                                                                            (b) 

Figure 16. Major alternatives and roles for system-level parallel languages in Design phase 

As illustrated in Figure 16(a), the initial emphasis of the scalable coordination language would be in coordinating mostly 
homogeneous computing with a set of tools and devices selected from a heterogeneous suite, where for SIRCA we emphasize 
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and feature the FPGA as the superior device technology for a broad range of Industrial, spacel and DoD missions.  As these 
innovations proceed, a later emphasis would emerge, with this system-level language responsible for coordinating 
heterogeneous computing, involving many or all of a disparate set of devices (FPGA, CPU, GPU, Cell, etc.).  Such a scalable 
coordination language would help bridge between the Formulation and Design layers, from strategic to tactical design and 
reuse.  It would operate above a suite of one or more stove-pipes, pairings of design tools and devices (e.g. Impulse-C over 
FPGA, Gedae over Cell, OpenMP over CPU, CUDA over GPU).  It and the device design languages would collectively 
leverage modules from expanding vendor and user libraries for code reuse and thereby exploit the productivity gains inherent 
with such reuse. 

As an alternative to system coordination languages, abstract system-level design languages, shown in Figure 16(b), 
coupled with interrelated high-level synthesis tools, could potentially be used to completely separate function from 
architecture, thus allowing a single behavioral description to be translated on to any underlying architecture.  Of course, such 
a language may sacrifice efficiency compared to device-specialized design languages, which are created by device experts to 
efficiently solve device-specific problems.  However, system design languages and system coordination languages need not 
be mutually exclusive, potentially allowing the majority of an application to be specified with a system design languages, 
with performance critical regions being specified using combinations of system coordination languages and device design 
languages. 

Thrust #6: Hardware/Software Co-design Methods 

Current design flows for FPGA-based systems require separate specification and design of hardware and software.  
Algorithm partitioning and task scheduling are typically performed manually, a priori, before design.  Due to a lack of unified 
hardware/software representations and co-design methodologies, system-level design, debug, and verification costs pose a 
major bottleneck for design productivity.  Integrated and unified hardware/software co-design methods that extend to the 
system as a whole and not just FPGAs are essential for system-level user design perspective and user productivity.  Although 
this problem is not unique to RC systems and has been studied extensively by embedded systems and distributed computing 
communities, it is much more challenging for RC systems due to multiple levels and layers of parallelism and available 
hardware feature diversities [Saha-07a].  But, concepts and methods developed by these communities should be leveraged 
and extended for FPGA-based system-level designs.   

 

 

 

Figure 17. ReCos co-scheduling algorithm 

The Polis project from UC Berkeley explored hardware/software co-design issues for real-time embedded systems 
[Balarin-97].  It laid the foundations of the platform-based design methodology and provided a design flow for hardware and 
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software partitioning and system-level co-simulation.  But, it supported only a single model of computation: co-design finite-
state machines (CFSMs).  Metropolis was a follow-on project based on the principles of platform-based design and provided 
a unified and integrated environment that included a meta-model framework to implement most models of computations 
(MOCs) and related simulation and synthesis tools [Balarin-03].  Many concepts for hardware/software co-design explored in 
these projects can be leveraged for reconfigurable computing systems.  [Saha-07b] proposes a co-scheduling algorithm, 
ReCos to address the specific hardware/software co-design concerns for reconfigurable computing systems.  Figure 17 
illustrates ReCos algorithm, which is under development at the George Washington University CHREC site.  ReCos accepts 
various objective functions such as communication overhead, resource constraints, reconfiguration overhead, and application 
task graph as inputs.  These objective functions are used to find suitable schedules for the tasks.  The output of the algorithm 
is an optimized task graph assigned to the corresponding processing elements.   

Thrust #7: Reusable and Portable Design 

Built-in constructs facilitating reuse and design portability have the potential to significantly increase user productivity.  
Reusability in FPGA design is currently limited to reusing IP cores, but even IP reuse is restricted by lack of standards for 
FPGA system and sub-system interfaces to make cores portable across platforms from different vendors.  Reuse has to be 
multi-faceted and must include reuse of cores, templates, patterns, knowledge, and run-time services.  System-level 
frameworks and integrated environments for portable and interoperable core libraries, templates, patterns, and services for 
special mission scenarios such as fault tolerance, partial reconfiguration, and real-time systems are critical for fostering reuse.  
Pattern-based design methodologies discussed under Formulation innovations offer one such mechanism for enabling reuse 
of knowledge and common solution patterns.  Portable core and service libraries and integrated frameworks enabling their 
reuse can also significantly improve user productivity.  Design portability is a major problem in FPGA-based computing 
systems.  Designs and cores written for a one platform often must be almost entirely rewritten to execute on other platforms.  
Different design flows and diverse hardware features and platform interfaces make achieving design portability very 
challenging.  Interface standards for FPGA systems, sub-systems, and components can significantly enhance design 
portability, fostering code reuse and significantly impacting user productivity.   

 

 

Figure 18. Portable framework interface (PFIF) [Huang-08] 

Research and standardization efforts from organizations such as OpenFPGA should be supported and enhanced 
[OpenFPGA].  [T-GENAPI] is a technical working group at OpenFPGA for developing standard FPGA functionality 
application programming interfaces.  Their mission is to identify and develop an application-independent, common interface 
for basic FPGA functionalities.  [T-APPLIB] is a technical working group to develop application specific FPGA libraries.  
Their mission is to define the elements needed for using portable, software-callable, application-specific programming 
interfaces to incorporate FPGA functionality in traditional software applications.  Examples of APIs may include BLAS, 
LaPack, ScaLapack, SciLib, PCBL, etc.  [T-CORELIB] is a technical working group to develop interoperable core libraries.  
Their mission is to define the elements needed for increasing reusability and interoperability of the FPGA functional core 
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definitions that are incorporated into applications.  These standardizations efforts are essential to achieve reusability and 
portability in FPGA application development.  [Huang-08] presents a Portable Framework Interface (PFIF) for IP cores under 
development at the George Washington University CHREC site to address the portability issues of core libraries.  PFIF 
framework is illustrated in Figure 18.  PFIF is a layered architecture that is built on top of the FPGA platform vendor services 
and interfaces.  At the software side, PFIF provides a set of common functions in order to allow the user to exchange data 
between the microprocessor and the FPGA cores.  On the hardware side, the Portable Framework Control Logic (PFCL) acts 
as a wrapper of the vendor services and includes the vendor specific interfaces for the local memory controllers and the 
communication services.  PFC interface to the rest of the system is standard, hence achieving the required core portability.  
Services logic on top of PFCL provides diverse services to the user logic that can be used by the IP, including logical 
memory banks, registers, FIFOs, and direct memory access (DMA) capabilities to access the microprocessor memory.  A 
GUI supports easy customization and use of the PFIF services. 

Qualitative Impacts of Design Innovations 

Innovations in Design phase result in reduction in Design time due to more intuitive and high-level development 
methodologies and tools.  Mechanisms for reuse and portability significantly improve design productivity.  Better Design 
tools mean less frequent design and re-design, reducing not only Design time but also DTE frequency (number of iterations 
or cycles through the Design, Translation, Execution phases). 

3.3 Translation: Research Thrusts and Qualitative Impacts 

Translation tools, in particular delays in place-and-route (PAR) time, are often regarded as one of the biggest 
impediments to FPGA development productivity.  Translation cost, which we define as the product of Translation time and 
Translation frequency (i.e. how often one must translate), is rapidly increasing due to larger chip densities.  Translation time 
can be improved through innovations in Translation algorithms and through innovations in the architecture of the target 
devices.  Translation frequency can be reduced through innovations in the other phases.  The research thrusts identified for 
the Translation phase are as follows. 

Thrust #8: Translation Algorithms 

Innovations in Translation algorithms may significantly reduce Translation times.  However, closed source and 
proprietary Translation tools have limited innovations by academic and other research communities.  Therefore, one 
challenge is in fostering third-party algorithmic innovations while maintaining the intellectual property rights of vendors.  
Government investment can be the necessary catalyst for encouraging commercial FPGA companies to provide support for 
third-party innovations.  

Research emphasis on high-level synthesis to produce better inputs for PAR tools can help improve Translation times 
[Buyukkurt-06].  Research innovations directed towards parallel Translation algorithms exploiting newer multi-core 
microprocessors can also significantly reduce Translation times [Haldar-00, Wrighton-03, Fobel-07].  Other potential 
research directions to expedite Translation times include region-based PAR methods to reduce routing complexity and 
improved PAR techniques to tradeoff routing effort and/or resource utilization for reduced Translation times [Mulpuri-01, 
Lysecky-06].  To explore new algorithms and target architectures, and make research innovations from third party 
researchers possible, standard abstractions for FPGA device architectures are essential.  One technique is versatile place and 
route (VPR).  As illustrated in Figure 19, the VPR technique enables interchanging algorithms and device architectures to 
explore new methods and better device targets [Betz-97].   
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Figure 19. Example VPR technique for improving Translation algorithms [Betz-97] 

Thrust #9: Translation Target Architectures 

An alternative to improving Translation times is an emphasis on innovations in device architectures to provide better 
targets for PAR tools [Lysecky-06, Stitt-07].  The fine-grained reconfigurability and device complexity of current FPGA 
devices increases complexity of existing Translation algorithms.  FPGAs provide a highly flexible routing structure that 
occupies the majority of its silicon area.  Although this flexibility is needed for many circuits (e.g. glue logic), it may be 
overly sophisticated for many applications with data-flow architectures, which pre-dominantly use “nearest neighbor” 
communication patterns such as systolic arrays.  Innovations in routing strategies and configurable logic structures may 
reduce Translation algorithm complexities thereby significantly reducing the Translation times.  One possible disadvantage 
of Translation target architectures is that decreased routing flexibility may degrade circuit performance. However, many 
designers may be willing to accept a small overhead for a large reduction in Translation times.     

One approach for reducing routing complexity is the use of hierarchical routing structures with tool emphasis on 
communication and data locality.  Coarser device architectures may also help reduce PAR complexity (e.g. Mathstar FPOA).  
Virtual, coarse-grain architectures built on top of fine-grained FPGA devices may also provide similar functionality without 
the need for new silicon devices.  For example, [Lysecky-04] presents an alternate routing-oriented FPGA fabric and custom 
routing algorithm (ROCR) for just-in-time hardware compilation (see Figure 20).  Each CLB block in this fabric is connected 
to a single switch matrix providing all input/output connections for the CLB.  The fabric has restricted routing resources as 
compared to traditional FPGAs and provides routing of each net only to a single pair of channels throughout the configurable 
logic fabric.  The employed routing restrictions greatly simplify the routing algorithm enabling just-in-time compilation.  
Their experiments demonstrate 10× faster compilation time as compared with the well known versatile place and route (VPR) 
tool suite at the cost of 10% increase in additional routing resources and 32% reduction in circuit performance as compared to 
VPR’s timing-driven router.  The circuit performance when compared with VPR’s routability-driven router is 10% faster 
using their ROCR router.  
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(a) (b) (c) 

Figure 20. Routing oriented FPGA fabric for just-in-time compilation. (a) Configurable logic fabric, (b) configurable logic 

block,  

and (c) Switch matrix architecture [Lysecky-04] 

Qualitative Impacts of Translation Innovations 

Although Translation time is generally considered a major bottleneck in development productivity, reductions in the 
number of iterations through the Translation phase could also have a significant impact on the overall development 
productivity.  Innovation in Translation algorithms and device architectures will result in reduced Translation time, but not 
Translation frequency.  Reductions in Translation frequency can be achieved via innovations in Formulation, Design, and 
Execution phases.  Therefore, overall development productivity impact of innovations in Translation phase may be modest as 
compared to impact of Formulation and Design innovations.  However, it should be noted that reducing Translation time may 
have many intangible benefits in terms of human factors. Faster Translation may impact debugging iterations and user 
interactions with the design and hence could result in higher productivity gains.   

 

3.4 Execution: Research Thrusts and Qualitative Impacts 

Methods and tools are necessary to provide run-time services in the Execution phase to support the debug, verification, 
analysis, and optimization of FPGA-based RC applications. The research thrusts indentified for the Execution phase are as 
follows. 

Thrust #10: Run-time Debug and Verification 

As FPGA devices, systems, and applications continue to grow in size and complexity, the difficulty and cost of 
debugging and verification increases as well.  Unlike traditional software programs, it is not a trivial task to manually print 
and check the state of particular variables during execution.  Instead, FPGA designers must manually implement specific 
circuitry for the purpose of gathering and returning debugging information.  This process is very inefficient, often leading to 
many wasted design iterations.  To maximize productivity, gathering and displaying data for the purpose of debugging and 
verification should be made transparent to the user, especially domain scientists who are likely to be designing at a high 
abstraction level.  Available run-time analysis tools such as Xilinx Chipscope and Altera SignalTap are complex and require 
significant expertise in hardware design.  Also, these do not address any system-level issues and are limited to a single 
FPGA.  System-level, run-time debug methods and tools can significantly reduce debug and verification costs potentially 
eliminating wasteful debug iterations.  Interface standards for FPGA systems and sub-systems with built-in debug support 
can help reduce verification times and increase the overall productivity. 
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Figure 21. Possible stages for design instrumentation [Graham-01] 

It is essential to instrument designs to add support for debug and verification.  Instrumentation can occur at different 
design stages as illustrated in Figure 21 from [Graham-01].  Instrumentation can occur at the design source level 
(HLL/HDL), at the netlist level, or at the bitstream level.  Alternately, dedicated debug circuitry can also be pre-fabricated on 
the FPGAs limiting the required instrumentation.  [Graham-01] illustrates direct instrumentation of FPGA bitstreams to 
provide automated debugging capabilities.  [Camera-05] demonstrates debug capabilities by inserting specialized logic before 
synthesis to allow for variable buffering, assertion checking, and automatic checkpointing.  Source-level design 
instrumentation illustrated in [Koehler-07] can be used for debug and optimization of the designs.  Both Xilinx and Altera 
provide commercial packages for automated debugging and instrumentation that allow users to insert an embedded logic 
analyzer (ELA) into their design.  Altera’s SignalTap [Altera-99] provides a GUI through which the user defines how the 
ELA connects to their FPGA design, which is then automatically included in the design’s netlist.  ChipScope [Xilinx-00] 
from Xilinx also allows the user to insert an ELA to their design, though ChipScope’s ELA cores must be added manually to 
the HDL source code.  An advantage of the ChipScope ELA is that modifications to the signals that interface the ELA may 
be made without a complete recompilation of the design.  All of these approaches are single-device debug techniques.  For 
system-level designs of FPGA-based RC systems new methods and concepts are required for automated instrumentation, data 
collection, visualization, and analysis for debug and verification of the system as a whole.  [Tomko-00] demonstrates an 
environment for co-debugging of hybrid applications consisting of C/C++ software components and VHDL hardware 
components.  The environment defines a standard interface that allows debugging data to be collected from both software and 
hardware components, and viewed within a VHDL simulator.  Although such instrumentation techniques for debug may 
impose modest performance and resource penalties, the cost paid would be insignificant in comparison to improved 
productivity.  Also the instrumentation techniques for debug and verification may equally be used for identifying design 
bottlenecks for critical performance and resource optimizations which may offset any penalties paid. 

Thrust #11: Performance Analysis 

As with debug and verification, run-time performance and resource analysis is also extremely challenging in FPGA-
based HPC and HPEC systems.  Increasing system-level complexities make identifying performance bottlenecks and 
achieving desired performance difficult due to lack of concepts and tools for run-time analysis of RC applications.  Although 
performance analysis concepts and tools are well researched and widely available for traditional parallel computing 
applications, those tools fail to address the increased complexity of RC systems.  The behavior of an RC application can be 
particularly difficult to observe and understand due to additional levels of parallelism and complex interactions between 
heterogeneous resources.  Methods and tools tailored for run-time, post-mortem analysis of RC applications can help to 
quickly identify and locate critical performance and resource bottlenecks.  Automated analysis and visualization of run-time 
performance data displayed to the user in an intuitive, high-level format can substantially improve user productivity, 
eliminating the need for users to manually parse large amounts of run-time performance data.  Furthermore, the gathering of 
performance data should also be largely automated, requiring minimal additional effort from the user.  Without high-level 
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automated tools for performance analysis, the task of run-time performance optimizations becomes tedious and unattractive 
to domain scientists.  

[Koehler-07] presents a unified, run-time performance analysis framework for RC applications under development at the 
University Florida site of CHREC.  This framework builds on top of and extends an existing HPC performance analysis tool, 
Parallel Performance Wizard (PPW), the first-ever comprehensive performance tool for UPC and SHMEM computing, also 
developed at Florida.  Figure 22 shows various performance analysis stages used by their framework.  The original 
application is first instrumented to modify component interfaces and add a hardware measurement module (HMM) to collect 
run-time data (see Figure 23).  The HMM is responsible for implementing all profile, trace, and sampling capabilities, as well 
as packaging that data for retrieval by software.  The instrumented application is then executed and run-time data is collected 
and analyzed for potential bottlenecks.  The application is then optimized based-on the analysis results to achieve the full 
potential of the existing hardware resources.  [Curreri-08] presents extensions of this framework to instrument and analyze 
high-level language FPGA applications.  

 

Figure 22. Stages of performance analysis 

[Koehler-07] 

 

Figure 23. Source-level additions made by instrumentation [Koehler-07] 

Thrust #12: Run-time Services 

Run-time services can greatly simplify the FPGA development process by reducing the number of system-level issues 
that must be addressed by designers.  By providing services at run-time that user applications can exploit, designers can 
obtain the desired functionality by targeting the service and rely on the execution platform to do the rest.  Furthermore, as 
FPGAs are used in more diverse scenarios, the services needed to support their execution will become more diverse and 
important as well.  Run-time services for FPGA systems include but are not limited to scheduling, fault tolerance 
management, partial-reconfiguration management, and standard operating system services such as threads and 
communication.  Currently, these services are not provided to the user when development begins.  Therefore, any FPGA 
design which requires the functions of such services must fully implement those functions manually.  Thus, run-time services 
would make the implementation of such functions simpler, efficient, more reliable, and reusable.   

[Lubbers-07] presents ReconOS operating system services for FPGA-based embedded real-time systems.  Based on the 
eCos operating system, ReconOS supports both software and hardware threads in a single unified programming model.  
Hardware threads execute on FPGAs and interface with the operating system using the operating system interface (OSIF).  
OSIF provides thread synchronization services giving software-like abstraction of the reconfigurable hardware for the 
programmer.  Figure 24 illustrates the ReconOS system architecture.  [Troxel-06] presents reliable management services for a 
space supercomputer, the NASA Dependable Multiprocessor (DM), under development for NASA by the University of 
Florida and Honeywell and built using Commercial-Off-The-Shelf (COTS) technologies.  The DM platform is composed of a 
collection of COTS data processors augmented with COTS FPGAs and radiation hardened system controllers to interface 
with the spacecraft control computer.  A middleware layer provides various components such as reliable messaging, fault-
tolerance managers and agents, and job managers and agents as illustrated in Figure 25.  These components provide reliable 
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run-time communication, fault recovery, and job scheduling and management services for the applications executing on data 
processors and FPGAs.   

 

Figure 24. ReconOS System architecture [Lubbers-07] 

 

Figure 25. DM Middleware Architecture [Troxel-06a] 

Qualitative Impacts of Execution Innovations 

Superior Execution tools can offer significant development cost savings, and reduction in debug time and DTE 
frequency.  Critical optimizations and bottleneck elimination can also result in significant utility gains, consequently 
increasing productivity. 

4 Quantitative Productivity Analysis with Existing Tools 

In the previous section, we presented the qualitative impact of the proposed innovations on productivity for each 
strategic research direction.  Next, a two-prong approach to quantitatively predict the impact of the innovations on 
productivity will be described.  A quantitative analysis of the impact based on existing tools will be discussed in this section, 
followed by a quantitative analysis of the impact based on the projected future of the FDTE innovations in Section 5.   

Both quantitative impact analyses are based on the following RC Productivity Model.  Productivity, as defined by the 
DARPA HPCS program [Kepner-04a], is the ratio of utility over development cost:  

C

U
  (1) 

Utility U is a function of a set of weighted attributes ai used to measure the usefulness of a design.  Examples of utility 
attributes include speed, throughput, power efficiency, and area efficiency.  The magnitude of utility can be measured as the 
length of the utility vector in a multi-dimensional utility space:  

 UlengthU   (2) 
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Figure 26. Example 2-dimensional utility space 

Figure 26 shows an example of a 2-dimensional utility space, using utility attributes weighted speedup S and power 
savings P. For example, the utility for Design 1 is: 

  2
1

2
1111 PSUUlengthU   (3) 

The development cost C is the work required to achieve that utility and is typically measured as development time (e.g. 
man-hours) or dollars.  The cost for an RC application prototype is modeled as the summation of the costs for the four phases 
of the FDTE model: Formulation ( FC ), Design ( DC ), Translation ( TC ), and Execution ( EC ).  Each application may require 

the development of multiple (k) prototypes. Each prototype is represented as a design iteration i.  

 



k

i
iCCCCC ETDF

1
 (4) 

The productivity number is often more meaningful when compared with a reference.  Hence, our analysis will mainly 
calculate relative productivity gains given by the ratio of two productivities.  Typically, 2 is used as a reference:  
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Again, a two-prong approach to quantitatively validate the impact of the innovations on productivity will be described.  
The quantitative analysis of the impact based on existing tools will follow in this section.  A quantitative analysis of the 
impact based on the projected future of the FDTE innovations will be discussed in Section 5. 

The analysis of current tools allows an understanding of the potential of the proposed FDTE Methodology.  Current tools 
are primarily Design-centric, where it is usually assumed that the user has the necessary hardware development skills for 
required for RC platforms.  

The comparative study conducted in [El-Araby-07a, El-Araby-07b] considered some of the available tools; see results 
shown in Figure 27.  The goal of that study was to measure (or estimate) the productivity of the selected tools taking into 
consideration the acquisition time (i.e. the time required to learn the tool), the development time, and the utility.  The utility 
was measured based on how good the tool is in reaching the target (or optimal) requirements, e.g. frequency and area 
utilization.  The table in Figure 27 shows the average results obtained from different groups of users developing a set of IP 
cores using the selected tools.  The graph in Figure 27 shows the relative productivity space of the tools based on the total 
cost.  The target (or optimal) utility was set to 200 MHz for frequency and 0% for area utilization. 

Previous results in Figure 27 show the productivity of each individual tool.  However, it is possible, as shown in Figure 
28, to classify these tools following the FDTE Methodology.  Although all of the tools are Design-centric, some of them 
(SysGen and RC Toolbox) present environments that enable a higher design abstraction.  These tools were selected to 
represent the current status of Formulation tools, although their formulation capabilities are limited (or they lack formulation 
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capabilities).  We classified these tools as Formulation-Like Flow tools. The remaining tools were grouped as Design-Centric 
Flow.  

 

     
 

  

Figure 27. Relative productivity and results from selected tools 

In addition to the selected tools, we needed to identify Translation and Execution tools.  However, Translation and 
Execution are not design-entry phases; they are optimization and debug phases.  Translation tools are involved in the design 
process in a transparent way, like for example, when users need to synthesize or execute P&R tools.  There are two kinds of 
Translation tools.  First, there are synthesis and Place & Route tools, most of which are automatic tools that allow the user to 
improve the results by increasing the effort or changing some execution parameters.  Second, there are manual place and 
route tools like PlanAhead, where the user needs a deeper knowledge of the reconfigurable hardware.  We observed the fact 
that, to use these tools, it is required to execute the Formulation and/or Design phases first.  Therefore, to evaluate these tools, 
a Translation/Execution-Centric Flow will be considered.  With these assumptions, we define: 

 Translation/Execution Utility:  

o 20% Improvement with respect to Design (e.g. Area, Frequency) based upon vendor literature 

 Translation/Execution Cost 
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o Acquisition timeTranslation = Acquisition timeFormulation + Acquisition timeDesign 

o Development timeTranslation = TTranslation + MIN(Development timeFormulation, Development timeDesign) 

Based upon classification of tools and previous definitions, Figure 29 summarizes the estimated values for each type of 
FDTE tools showing the execution costs in form of the acquisition and the development time as well as the utility numbers 
for the frequency and the utilized area.  Considering this data, the productivity results of each development phase can be 
represented as shown in Figure 30.  The Formulation-Like design environments that enable a higher design abstraction show 
the best productivity gain because they achieve the best results in terms of frequency and utilized area in the shortest amount 
of time.  The lowest productivity gain is achieved by the Translation/Execution-Centric Flow because the development costs 
are significantly higher.  Development tools at that level provide capability to significantly influence placement and routing 
of circuit components which results in long acquisition and especially long development times.   

The observation based on the study of current tools indicates that Formulation as an entry point has a potential for higher 
productivity impact.  Spending time and effort in Formulation can result in a higher productivity than Design or 
Translation/Execution.  Furthermore, Formulation is performed on a more abstract level and does not require detailed 
knowledge about the targeted RC system.  This higher level of abstraction can potentially expand the user base to domain 
scientists and programmers significantly improving their design productivity.  However, the current Formulation tools are 
still immature because they are close to Design-Centric than Formulation.  Another important need is the seamless integration 
of the different tools (e.g. IDE with multiple entry points for different users). 

Finally, based on the results obtained from current tools, we can identify the cost implications of the FDTE 
methodology.  While emphasizing that Formulation may have maximum potential impact on productivity, it entails 
significant tool development complexity and the associated costs for the vendor, as shown in Figure 31. 

 

 

 

Figure 28. FDTE classification of selected tools 

 

 

 

 

Figure 29. Relative productivity and results from selected tools 

 



 

24 

 
 

 
 

 

Figure 30. Productivity space and gain from selected tools 
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Figure 31. FDTE cost implications 
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5 Quantitative Productivity Analysis with Future FDTE Innovations 

Before presenting the details of the analysis, we first describe our general approach and define the key assumptions.  
This information provides the background for the projections to be estimated. 

Approach. Productivity impact is determined by many factors, interrelated in a complex manner.  To keep our analyses 
tractable and to gain a clear understanding of the analyses, our approach is to break the complex problem into its component 
factors in order to isolate and focus on the impact of each factor.  Our analysis is set up as follows.  There are five analyses.  
For the first four, the impact from the increase in utility U is assumed to be minimal, while we analyze the productivity effect 
based only on the change in cost C.  These four analyses are as follows: 

1 Assume that there are innovations only in the Formulation phase (as a result of SIRCA), with no innovation in the 
other three phases (holding them constant for simplicity and clarity), and determine the end-to-end development cost 
and the impact on productivity. 

2 Similar to #1, but with innovations only in the Design phase, determine productivity impact. 

3 Similar to #1, but with innovations only in the Translation phase, determine productivity impact. 

4 Similar to #1, but with innovations only in the Execution phase, determine productivity impact. 

For Analysis #5, using a different scenario, we assume the impact from the increase in cost C is minimal and we analyze the 
productivity effect based only on the change in utility U.  

For all five analyses, the cost of each phase is the product of time spent in that phase and the number of iterations 

through that phase (i.e. frequency).  For example, the Translation cost is  TTT tfC   

Two projections were made to compare to a defined baseline: conservative, and optimistic.  The conservative projection 
represents expected improvements that should certainly result from SIRCA.  Optimistic estimates represent ambitious but 
attainable productivity gains. 

Table 2. Baseline development costs 

Development  
Phase  

Development cost (hrs)  

Baseline   Rationale  

Learning Curve   400 (s/c)   HDL learning curve  

Formulation   40 (1w)   Current Formulation methods 

Design   480 (12w)  Estimated from literature  

Translation   200 (5w)   Estimated from experience  

Execution   280 (7w)   Estimated from literature  

Total   400 (10w) + 1000 (25w) = 1400 (35w)  
 

Baseline assumptions.  The five analyses assume a baseline development cost as a reference for relative productivity 
gains.  The assumptions for the baseline costs are as follows.  The percent breakdown for the baseline development time per 
phase was inferred from reported percentages of five HPC and HPEC software projects; Hawk, Saturn V, SAGE, NTDS, and 
Gemini [Kepner-04b, Kendall-05].  Note that the percentages were adjusted to reflect the development of an FPGA-based RC 
application (e.g. longer Translation time): 

Formulation = 5%, Design = 50%, Translation = 20%, and Execution = 25% 

The total baseline development time is assumed to be 1000 hrs.  Also, the analyses assume the user is a domain scientist 
knowledgeable only in sequential programming.  The baseline code is assumed to be developed in HDL, with a learning 
curve cost of 400 hrs (approximate time for an intensive one-semester university course (s/c)).  Based on these assumptions, 
Table 2 shows the resulting numbers for the baseline development costs (in units of hours and weeks). 

5.1 Impact of Formulation Innovations 

For this analysis, the assumption is that we are considering innovations only in the Formulation phase (as a result of 
SIRCA), and there are no innovations in the other three phases (holding them constant).  Also, we assume that there is no 
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increase in utility U, but there will be a decrease in cost C.  This approach represents the scenario of a user who is capable of 
getting the most utility out of a design.  Thus, new innovations in Formulation tools will not help him/her obtain more utility 
(e.g., speedup).  However, it can help him/her produce a design faster (decrease in cost C). 

Detailed results are shown in Table 3 and corresponding data is plotted in Figure 32.  Cost improvements due to 
innovations in each FDTE phase are estimated based on empirical knowledge.  Note that the rationale for cost reduction for 
each row of the table is also given. As is evident, if we spend more time and effort in the Formulation phase (80 hours or 2 
weeks for both the conservative and optimistic cases), it results in significant reduction of cost in the other three phases.  
Innovations in Formulation, with methods and tools to bridge to the Design phase, will result in a reduction in the learning 
curve and Design time.  Coding would be minimized and Design phase would be semi-automated through design patterns 
and code templates from Formulation.  Also, the number of prototype designs required and DTE frequency would be 
reduced, since better strategic choices in Formulation means less frequent design and re-design. 

Table 3. Impact of Formulation innovations 

Development 
Phase 

     Development Cost (hrs) 
Baseline   Conserv.   Optim. Rationale

Learning Curve   400 (s/c)   40 (1w)   8 (1d)   Reduction in time required to learn high­level tools & methodologies  
Formulation   40 (1w)   80 (2w)   80 (2w)  New FDTE will spend more time in F to save time in DTE

Design   480 (12w)   160 (4w)   20 (½ w) 
Reduction  in  Design  time  (templates)  &  frequency  (strategic 
exploration)  

Translation   200 (5w)   80 (2w)   20 (½ w) 
Reduction  in  Translation  frequency,  optimistically  approaching  one 
step  

Execution   280 (7w)   160 (4w)   20 (½ w) 
Lower  frequency  (strategic exploration) &  less run­time optimization 
& bugs  

End­to­End  
Dev Cost   1400  520   148    

Productivity  
Gain 

  1400/520 
= 2.7 

1400/148 
  = 9.5  (from 35 weeks to only 3.7 weeks)  

 

 

Figure 32. Productivity gain from Formulation innovations 

 

5.2 Impact of Design Innovations 

Similar to the previous subsection, the assumption here is that we are considering innovations only in the Design phase 
(as a result of SIRCA), and there are no innovations in the other three phases.  Also, we assume that there is no increase in 
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utility, but there will be a decrease in cost.  The detailed results are shown in Table 4 and the corresponding data is plotted in 
Figure 33.  The rationale for the cost reduction for each row of the data is also given. 

In general, innovations in the Design phase result in many of the same benefits as Formulation.  Improved Design 
methodologies lead to considerable DTE cost reduction, including a reduction in Design time, which is a result of intuitive, 
high-level design tools.  There is also a reduction in DTE frequency (e.g. less need for debugging and optimization) due to 
better concepts and tools.  However, due to lack of strategic exploration in Formulation, it does not reduce prototype 
iterations caused by poor strategic design decisions. 

Table 4. Impact of Design innovations 

Development  
Phase  

   Development Cost (hrs)  
Baseline   Conserv.  Optim. Rationale

Learning Curve   400 (s/c)   80 (2w)   16 (2d)  Reduction in  time required to learn high­level tools & methodologies
Formulation   40 (1w)   40 (1w)   40 (1w)  No impact
Design   480 (12w)   240 (6w)   80 (2w)  Reduction in  Design time due to intuitive languages & methodologies 
Translation   200 (5w)   120 (3w)   40 (1w)  Fewer design flaws lead to reduction in Translation frequency
Execution   280 (7w)   200 (5w)   40 (1w)  Fewer design flaws lead to reduction in Execution(e.g. debugging frequency)
End­to­End  
Dev Cost  

1400  680   216    

Productivity  
Gain 

  1400/680 
= 2.1  

1400/216  
   = 6.5  (from 35 weeks to only 5.4 weeks) 

 

 

 

Figure 33. Productivity gain from Design innovations 

5.3 Impact of Translation Innovations 

As before, we are considering innovations only in the Translation phase, thus we assume that there are no innovations in 
the other three phases.  We also assume that there will be a slight increase in utility and a decrease in cost.  The detailed 
results are shown in Table 5 and the corresponding data is plotted in Figure 34.  

Although Translation time (T time) is often considered one of the biggest impediments to FPGA-based development 
productivity, it is shown here that the impact of innovations in reducing T time may not affect overall productivity 
significantly.  The reason is that innovations in Translation do not affect F, D, or E costs, nor the T frequency, which is more 
critical than just reducing T time.  As shown in the earlier analyses, T frequency reductions can be achieved via innovations 
in the F, D, and E phases.  Note that unlike the previous analyses, we also assume a 10% (conservative) and a 30% 
(optimistic) gain in utility, assuming better Translation algorithms and devices will improve utility.  Even with this 
assumption, the productivity gain is modest. 
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It should be noted that our analyses does not account for any intangible benefits of reductions in Translation times.  
Benefits of faster Translation may impact debugging iterations and user interactions with the design and could result in 
higher productivity gains.  Although reductions in Translation frequency may have higher impact on overall productivity, 
Translation time improvements are vitally important and innovations here must not be ignored. 

 

Table 5. Impact of Translation innovations 

Development  
Phase  

        Development Cost (hrs)
Baseline   Conserv.   Optim. Rationale

Learning Curve   400 (s/c)   400 (s/c)   400 (s/c)  No impact
Formulation   40 (1w)   40 (1w)   40 (1w)  No impact
Design   480 (12w)   480 (12w)   480 (12w)  No impact
Translation   200 (5w)   40 (1w)   8 (1d)  Significant reductions in Translation  time, not frequency
Execution   280 (7w)   280 (7w)   280 (7w)  No impact
End­to­End  
Dev Cost  

1400  1240   1208    

Utility Gain     10%   30%  Better resource utilization and clock frequencies due to innovated tools

Productivity  
Gain 

1.1 × (1400/1240) 
          = 1.2 

1.3  ×  (1400/1208)  
         = 1.5  

 

 

 

Figure 34. Productivity gain from Translation innovations 

5.4 Impact of Execution Innovations 

As before, we are considering innovations only in the Execution phase, thus we assume that there are no innovations in 
the other three phases.  We also assume that there will be a slight increase in utility and a decrease in cost.  The detailed 
results are shown in Table 6 and the corresponding data is plotted in Figure 35.  The rationale for the cost reduction for each 
row of the data is also given. 

Innovations in Execution methods and tools will reduce debug, verification, and optimization costs in the DTE phases.  
They will also reduce the DTE frequency to minimize the number of debugging and optimization cycles.  The learning curve 
is reduced since run-time analysis tools will become more intuitive to the user.  As in the case of Translation, this analysis 
assumes a 10% (conservative) and a 30% (optimistic) gain in utility because innovations in Execution methods and tools will 
help identify bottlenecks and critical design optimizations that may increase utility (e.g. speedup). 
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Table 6. Impact of Execution innovations 

Development  
Phase  

     Development Cost (hrs)  
Baseline   Conserv.  Optim. Rationale

Learning Curve   400 (s/c)   360 (9w)   320 (8w)  Easier learning curve for run­time analysis & optimization tools
Formulation   40 (1w)   40 (1w)   40 (1w)  No impact
Design   480 (12w)   360 (9w)   280 (7w)  Reduction in Design frequency and debugging time  
Translation   200 (5w)   120 (3w)   80 (2w)  Fewer debugging cycles leads to reduction in Translation frequency
Execution   280 (7w)   160 (4w)   40 (1w)  Better tools quickly identify bottlenecks and bugs  
End­to­End  
Dev Cost  

1400  1040   760    

Utility Gain     10%   30%  Critical design optimization and bottleneck identification  

Productivity  
Gain 

       1.1×(1400/1040)  
                 = 1.5  

1.3×(1400/760) 
       = 2.4  

 

 

 

Figure 35. Productivity gain from Execution innovations 

5.5 Impact Summary Based upon Cost, Holding Utility Constant 

Based on the four analyses described in the previous sections, we can rank the research directions in terms of the 
projected impact of the innovations for the respective development phases.  The projected productivity impact for each phase 
is plotted in Figure 36, using the baseline development cost as a reference. 

1. Formulation innovations have the potential for maximum impact on productivity.  Also, Formulation innovations 
have the potential to dramatically increase the user base for FPGAs, cascading a multiplicative effect for 
productivity.  Finally, although strategic exploration concepts are central to RC, they are also potentially applicable 
to the GPC world. 

2. In general, innovations in the Design phase result in many of the same benefits as Formulation.  Design innovations 
by themselves increase overall productivity.  However, Formulation and Design innovations together will likely 
generate maximum impact. 

3. Execution innovations are important for providing critical run-time information.  They enable the reduction in 
optimization, debug, and verification costs. 

4. Improvement in Translation time is beneficial, but that alone is less impactful on overall productivity.  
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Our analyses have focused on the isolation of the impact for innovations in each development phase.  It should be clear 
that the cumulative impact for all four phases will yield maximum benefit.  Unfortunately, since the cumulative productivity 
impact is a complex function of the individual impacts, we cannot simply add them together.  However, we can make some 
meaningful observations.  Recall that innovations in all four phases can combine to drive DTE down, whereas none of the 
other innovations will drive F lower.  Thus, theoretically the maximum achievable productivity, considering development 
time alone, will be limited by the Formulation cost and learning curve.  Thus, as DTE costs approach 0, the development cost 
is equal to the learning curve cost plus the Formulation cost.  As shown by the dashed horizontal lines in Figure 36, for the 
conservative case, the gain approaches 1400/120 = 12, and for the optimistic case 1400/88 = 16.  Note that these theoretical 
maximums are based on the numbers in Table 3 and will vary depending on the particular case study.  Further, productivity is 
unlike speedup; a 12× reduction in cost (C) would be truly outstanding (e.g. man-year effort reduced to man-month). 

Finally, all the analyses thus far considered only the improvement in the cost part of the productivity equation.  We have 
held the utility part of the equation constant.  It should be clear that the productivity benefits would be even more pronounced 
when utility improvement from using FPGA-based RC is included, as will be shown in the next analysis. 

 

 

Figure 36. Productivity impact of proposed innovations 

 

5.6 Projected Impact based upon Utility, Holding Cost Constant 

This analysis evaluates the productivity impact resulting from the utility of FPGA-based RC as compared to fixed 
computing devices.  With systems featuring fixed-architecture, multi-core and many-core devices, many of the development 
problems faced by RC are now also faced for GPC, although more severe in RC due to benefits of variable architecture as 
opposed to fixed with FMC devices.  Thus, this analysis assumes comparable development costs, and evaluates the impact 
based on the utility of RC.  Of course, we do not expect RC development cost to be equal to fixed-computing costs.  But, in a 
“SIRCA-enabled” world, we believe we can get close in the future, especially as development in the FMC world gets harder 
as parallelism expands.  Additional assumptions for this analysis are follows: 

• FMC device baseline is modern microprocessors 

• Conservative: 10× speedup, 10× power savings, 2× dev cost with RC vs. fixed-computing  

• Optimistic: 50× speedup, 20× power savings, 1.2× dev cost with RC vs. fixed-computing 

(Note: This range of utility gain is common in today’s literature [Shackleford-01, Masuno-07, Merchant-07, Williams-08b].) 

Based on these assumptions, a two-dimension utility space (power savings P and speedup S) is shown in Figure 
37, comparing the utility of the three cases.  Recall from Section 4 that the utility for a 
Design 1 is: 
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Shown in Figure 38 is the Productivity Gain as compared to the baseline fixed-computing system with FMC microprocessors. 

 

 

Figure 37. Utility comparison 

 

 

Figure 38. Productivity gain comparison 

 

In summary, it has been shown in this analysis that the productivity benefit is even more pronounced when utility 
improvement from using FPGA-based RC is included.  Furthermore, FDTE innovations will make RC tools amenable to 
domain scientists.  System-level, hierarchical tools will abstract the underlying hardware details.  Automation will facilitate 
targeting FMC and RMC devices with significantly less effort, making performance, power, versatility, and cost advantages 
of FPGAs available to a larger user base. 
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6 SIRCA: A Proposed New Research Program  

Shown in Figure 39 is the summary roadmap for the proposed SIRCA program.  To recap, the program goals for SIRCA 
are: 

a) Develop innovative end‐to‐end concepts, methods, and integrated toolsets to dramatically improve the 
development productivity of FPGA‐based RC applications. 

 

b) Revolutionize implementation of critical DoD applications by broadening the use of FPGA‐based RC among domain 
scientists and system designers for both high‐performance computing (HPC) and/or embedded (HPEC) scenarios. 

Also summarized are the motivations for a program and the technical areas of particular interests.  These are the 12 
research thrusts identified and discussed in Section 3 of this report.  It should be noted that the concept diagram for the FDTE 
model on the bottom left of the figure emphasizes one of the key conclusions from this study.  That is, more time and effort 
spent in the Formulation phase will result in significant reduction of cost in the other three phases and thus reduction in the 
overall development cost.  Formulation innovations have the highest potential impact on productivity.  Also, Formulation 
innovations have the potential to dramatically increase the user base for FPGAs, thus cascading a multiplicative effect on 
development productivity. 

 
 

Figure 39. SIRCA program roadmap 
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7 Integrated Research Vision 

During the past year, two independent studies have been performed, each charged with defining a vision and roadmap 
for addressing fundamental challenges in application development tools for FPGA-based systems.  The outcomes from these 
two studies are described in two reports entitled Strategic Infrastructure for Reconfigurable Computing Applications 
(SIRCA) and FPGA Design Productivity (FDP).  The purpose of this section is to describe an integrated research vision that 
includes the major concepts and research approaches from these two studies in a unified and integrated manner.   

The two study teams met together on June 5th, 2008 in Salt Lake City along with experts in the field to present the 
results of their findings and begin the task of integrating the research vision presented by both teams.  Breakout groups at the 
meeting provided feedback and suggestions on how to integrate the results from these research studies. We believe that this 
unified vision can form the basis of a potential new program that will lead to revolutionary improvements in design 
productivity for reconfigurable computing systems. 

The two teams worked independently to query the reconfigurable computing community, gain a solid understanding of 
contemporary practices, and research past and current endeavors related to FPGA design productivity.  Surprisingly, the two 
teams presented findings that shared several common themes.  Both teams discussed similar causes to the problem and 
presented similar approaches for addressing the challenges in application development for FPGA-based systems.  However, 
each team approached its study in a unique manner and emphasized different aspects of the design methodology.  While the 
emphasis of each study was different, the results of both studies complement each other well and when taken together present 
a clear and complete research plan for significantly improving FPGA design productivity. 

The SIRCA team organized its study around the concepts of Formulation, Design, Translation, and Execution (FDTE).  
This research model is defined horizontally in terms of the four fundamental stages in application development.  The SIRCA 
study emphasizes research challenges in all four of these development stages but especially the Formulation stage, which 
features strategic design exploration and tradeoff analyses for complex systems and is pivotal for design productivity in many 
fields of engineering, and yet routinely overlooked in conventional hardware and software engineering. 

The FDP team organized its study around three research focus areas: Abstraction, Reuse, and Turns per day (ART). 
This research model is defined vertically, where each research focus area defines a key research thrust that must be addressed 
in all stages of application development. The FDP study emphasizes the need to increase abstraction (reduce design detail), 
apply reuse, and reduce turns per day at all stages of the design process to obtain significant improvements in design 
productivity. 

Figure 40 visually demonstrates the relationship between the models presented by the two study teams.  In the center, 
application development is defined in terms of the four stages in the FDTE model.  The process begins with Formulation, 
featuring strategic exploration of candidate algorithms and architectures supported by performance prediction for tradeoff 
analyses.  After strategic decisions are made, the process moves to code design and implementation in the Design stage, then 
Translation to produce an executable form, and finally Execution, where verification and optimization occur and the 
application executes supported by a variety of run-time services.  The arrows between stages emphasize the iterative nature of 
the development process and importance of exploiting results (templates, libraries, patterns, run-time information, etc.) 
between stages. 

Each of the three research themes of the ART model are shown as vertical bars that span all development stages of the 
FDTE model.  Reuse, for example, can be applied during Formulation, Design, Translation, and Execution to significantly 
reduce the amount of new work that must be performed by a programmer or by automated design tools.  The other two focus 
areas, abstraction and turns per day, also span the four design stages of the FDTE model – technical approaches for each of 
these focus areas are possible at each design stage to improve programmer productivity. 
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Figure 40. Integrated Research Vision 

Each of the teams identified a set of specific research thrusts that will lead to major improvements in design 
productivity, 21 thrusts all tolled.   As highlighted in Table 7, each of these research thrusts can be placed within the 
integrated research vision of Figure 40.  The two study teams believe that improvements in design productivity of 20× or 
better are possible if advancements are made with each of the development stages of the FDTE model and focused in terms of 
abstraction, reuse, and turns per day. 
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8 Summary and Conclusions 

The proposed SIRCA program is of vital importance for supporting future industrial, scientific and/or defense missions 
from satellites to supercomputers, and featuring advantages in speed, low-power, versatility, size, etc.  However, the chief 
roadblock for these technologies is productivity in application development for RC systems.   

A government led effort can drive innovation on this path in a coherent way.  By contrast, the prevailing industry in this 
field is fragmented, populated by disparate types of companies (e.g. from large device vendors to small tools vendors), and 
focused primarily on incremental, evolutionary steps instead of revolutionary breakthroughs.   

The proposed SIRCA program will set the foundation to meet these critical needs.  Impact projections have shown the 
potential for a dramatic decrease in application development cost, up to 12× by conservative estimates and 16× by optimistic 
ones.  This achievement would for example imply a reduction in development effort from one man-year to one man-month or 
less, which is a dramatic increase in productivity.  When factoring in utility as well, where productivity is the ratio of utility 
versus development cost, the results are even more dramatic.  Estimates suggest a gain in overall productivity of 30× and 
more can be achieved versus conventional HPC and HPEC systems that are based upon fixed-architecture multicore 
technologies.  The ultimate outcome from these achievements when rendered is that SIRCA will invigorate widespread 
exploitation of RC acceleration for a wide spectrum of applications.   

 

Table 7. Research Thrusts and Models 

 
 

 

 

 

 

 

 

 

Thrusts Abstraction Reuse Turns/day Formulation Design Translation Execution

SIRCA Research Thrusts
1. Strategic exploration X X X X
2. High-level prediction X X X
3. Numerical analysis X X X
4. Bridging design automation X X X X
5. System-level parallel languages X X X X
6. HW/SW codesign methods X X X X
7. Reusable & portable design X X X X
8. Translation algorithms X X
9. Translation target architectures X X
10. Run-time debug & verification X X X X
11. Performance analysis X X X X
12. Run-time services X X X

FDP Research Thrusts
1. Architecture shaping X X X
2. Dual-layer compilation X X X
3. Libraries & standards X X X
4. Interface synthesis X X X X
5. Parallel environments X X X X
6. Multi-FPGA synthesis X X X X
7. Platform services X X
8. Firmware X X X
9. High-level debug X X X

ART Model FDTE Model
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